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Abstract. We construct differential calculi on multiparametric quantum orthogonal planes in any dimen-
sion N . These calculi are bicovariant under the action of the full inhomogeneous (multiparametric) quantum
group ISOq,r(N), and do contain dilatations. If we require bicovariance only under the quantum orthogonal
group SOq,r(N), the calculus on the q-plane can be expressed in terms of its coordinates xa, differentials
dxa and partial derivatives ∂a without the need of dilatations, thus generalizing known results to the mul-
tiparametric case. Using real forms that lead to the signature (n + 1, m) with m=n − 1, n, n + 1, we find
ISOq,r(n+1, m) and SOq,r(n+1, m) bicovariant calculi on the multiparametric quantum spaces. The par-
ticular case of the quantum Minkowski space ISOq,r(3, 1)/SOq,r(3, 1) is treated in detail. The conjugated
partial derivatives ∂∗

a can be expressed as linear combinations of the ∂a. This allows a deformation of the
phase-space where no additional operators (besides xa and pa) are needed.

1 Introduction

Non commutativity of spacetime at the microscopic level
could provide an effective regularization of gravity, in al-
ternative to discretization methods. It is suggestive that a
non commutative structure of spacetime emerges in non-
perturbative attempts to describe string theories [1].

In this paper we use the non-commuting geometry [2]
of quantum groups [3,4], as defined by their differential
calculi [5–12], to derive the noncommuting differential ge-
ometry of the multiparametric quantum orthogonal planes
in any dimension. We then study real forms that are con-
sistent with the differential calculus and finally specialize
our treatment to the multiparametric quantum Minkowski
space.

The necessary prerequisite for the work presented here
has been the construction of inhomogeneous quantum
groups of the orthogonal type ISOq,r(N) and of their cor-
responding bicovariant calculi. This has been achieved in
past publications [13–16] via a projection from the known
multiparametric orthogonal groups SOq,r(N+2), and has
provided an R matrix formulation for the inhomogeneous
case.
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Other references on inhomogeneous q-groups can be
found in [17,18]. For multiparametric quantum groups see
[19–21].

In general, i.e. without any restrictions on the deforma-
tion parameters, inhomogeneous groups of the orthogonal
type contain dilatations. It is however possible to avoid di-
latations if one fixes some of the parameters (including the
r parameter appearing in the off-diagonal terms of the R-
matrix) equal to one, their classical value. The case r = 1
corresponds to a “quasi-classical” structure, for which the
original braiding matrix R̂ becomes diagonal (the corre-
sponding deformations are then called twistings). In this
case it is possible to construct a bicovariant calculus on
ISOq(N), and consequently on q-Minkowski space [14,16].

We present here a bicovariant calculus on the full mul-
tiparametric ISOq,r(N) without the restriction r = 1.
This calculus, however, is trivial on the SOq,r(N) quan-
tum subgroup: it can really be seen as a non-trivial cal-
culus only on the coset Funq,r[ISO(N)/SO(N)], i.e. on
the quantum orthogonal plane. For r 6= 1 this ISOq,r(N)–
bicovariant calculus on the quantum plane necessarily con-
tains dilatations.

If we require only SOq,r(N) bicovariance [more pre-
cisely right covariance under ISOq,r(N) and left covari-
ance only under SOq,r(N)], the calculus can be expressed
in terms of coordinates x, differentials dx and partial de-
rivatives ∂, without the need of dilatations. In this case
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the q-commutations between x, dx and ∂ close by them-
selves, and in fact generalize to the multiparametric case
the known results of [22–24]. Here these results emerge
from the broader setting of the bicovariant calculus on
ISOq,r(N). In this context we are able to explicitly relate
the partial derivatives ∂ to the ISOq,r(N) q-Lie algebra
generators.

It is natural to expect that a ∗-structure compatible
with ISOq,r(N) and with the bicovariant differential cal-
culus will induce a well behaved ∗-conjugation on the dif-
ferential calculus on the quantum plane, acting linearly on
the partial derivatives ∂a, (a = 1, ...N). The conjugations
that give the real forms ISOq,r(n+1, n−1), ISOq,r(n, n)
and ISOq,r(n, n + 1) are consistent with the ISOq(N)
bicovariant differential calculus. Using these conjugations
one can define real coordinates Xa and hermitian partial
derivative operators Pa ∼ ∂a, i.e. momenta. The conju-
gated ∂∗a are derived from the conjugation of the ISOq,r(N)
q-Lie algebra generators and can be simply expressed as
linear combinations of the ∂a, without the need of intro-
ducing an extra operator as done in [25]. The q-commu-
tations of the momenta P with the coordinates X define
a deformed phase-space that could be studied in the same
spirit as in [25].

We will be concerned with the conjugation that gives
the ISOq,r(n−1, n+1) calculus and in particular induces a
differential calculus on the q-Minkowski space. To retrieve
the other conjugations, both forN=even andN=odd, just
take DA

B = δA
B in the formulae where DA

B appears.
In Sect. 2 we recall briefly the structure of the

ISOq,r(N) quantum groups. Their differential calculi are
discussed in Sect. 3, and finally in Sects. 4 and 5 we present
the bicovariant calculi on quantum orthogonal planes in
full detail. In Appendix A we specialize our results to the
four-dimensional quantum Minkowski space, and list all
the relevant formulas for its non-commuting differential
geometry.

2 The quantum inhomogeneous group
ISOq,r(N)

An R-matrix formulation for the quantum inhomogeneous
groups ISOq,r(N) and ISpq,r(N) was obtained in [15],
in terms of the RAB

CD matrix for the SOq,r(N + 2) and
Spq,r(N + 2) quantum groups. We recall here the results
for SOq,r(N + 2). The quantum inhomogeneous group
ISOq,r(N) is freely generated by the non-commuting ma-
trix elements TA

B [A=(◦, a, •), with a = 1, ...N)] and the
identity I, modulo the relations:

T a
◦ = T • b = T •◦ = 0, (2.1)

the RTT relations

RAB
EFT

E
CT

F
D = TB

FT
A

ER
EF

CD, (2.2)

and the orthogonality relations

CBCTA
BT

D
C = CAD, CACT

A
BT

C
D = CBD (2.3)

The matrix R controls the non-commutativity of the TA
B

elements, and its entries depend continuously on a set of
parameters r, qAB (qAB appearing only in the diagonal
part of the R matrix). For r → 1, qAB → 1 (the “classical
limit”), RAB

CD → δA
Cδ

B
D. The quantum metric CAB and

its inverse CAB depend only on r and are given in [4].
The co-structures of ISOq,r(N) and ISpq,r(N) are

simply given by:

∆(TA
B) = TA

C ⊗ TC
B , κ(TA

B) = CACTD
CCDB ,

ε(TA
B) = δA

B . (2.4)

After decomposing the indices A=(◦, a, •), and defining:

u ≡ T ◦◦, v ≡ T ••, z ≡ T ◦•, xa ≡ T a
•, ya ≡ T ◦a

(2.5)
the relations (2.2) and (2.3) become

Rab
efT

e
cT

f
d = T b

fT
a

eR
ef

cd (2.6)

T a
bC

bcT d
c = CadI (2.7)

T a
bCacT

c
d = CbdI (2.8)

T b
dx

a =
r

qd•
Rab

efx
eT f

d (2.9)

P ab
A cdx

cxd = 0 (2.10)

T b
dv =

qb•
qd•

vT b
d (2.11)

xbv = qb•vxb (2.12)
uv = vu = I (2.13)

uxb = qb•xbu (2.14)

uT b
d =

qb•
qd•

T b
du (2.15)

yb = −rN
2 T a

bCacx
cu (2.16)

z = − 1

(r−
N
2 + r

N
2 −2)

xbCbax
au (2.17)

where qa• are N complex parameters related by qa• =
r2/qa′•, with a′ = N +1−a. The matrix PA in Eq. (2.10)
is the q-antisymmetrizer for the B,C,D q-groups given by
(cf. (B.4)):

P ab
A cd = − 1

r + r−1 (R̂ab
cd − rδa

c δ
b
d +

r − r−1

rN−2 + 1
CabCcd).

(2.18)
The last two relations (2.16), (2.17) are constraints, show-
ing that the TA

B matrix elements in Eq. (2.2) are really a
redundant set. This redundance is necessary if we want to
express the q-commuations of the ISOq,r(N) basic group
elements as RTT = TTR (i.e. if we want an R-matrix
formulation). We can take as independent generators the
elements

T a
b, x

a, v, u ≡ v−1 and the identity I (a = 1, ...N)
(2.19)
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The co-structures on the ISOq,r(N) generators can be
read from (2.4) after decomposing the indices A = ◦, a, •:

∆(T a
b) = T a

c ⊗ T c
b ,

∆(xa) = T a
c ⊗ xc + xa ⊗ v , (2.20)

∆(v) = v ⊗ v , ∆(u) = u⊗ u , (2.21)

κ(T a
b) = CacT d

cCdb , (2.22)
κ(xa) = −κ(T a

c)x
cu , κ(v) = u , κ(u) = v, (2.23)

ε(T a
b) = δa

b , ε(xa) = 0 , ε(u) = ε(v) = ε(I) = 1 .
(2.24)

In the commutative limit q → 1, r → 1 we recover the
algebra of functions on ISO(N) (plus the dilatation v that
can be set to the identity).

Note 2.1: as shown in [15], the quantum group
ISOq,r(N) can be derived as the quotient

SOq,r(N + 2)
H

, (2.25)

where H is the Hopf ideal in SOq,r(N + 2) of all sums
of monomials containing at least an element of the kind
T a
◦, T

•
b, T
•
◦. The Hopf structure of the groups in the

numerators of (2.25) is naturally inherited by the quotient
groups [27].

We denote by P the canonical projection

P : Sq,r(N + 2) −→ Sq,r(N + 2)/H (2.26)

It is a Hopf algebra epimorphism because H = Ker(P )
is a Hopf ideal. Then any element of Sq,r(N + 2)/H is of
the form P (a) and

P (a) + P (b) ≡ P (a+ b) ; P (a)P (b) ≡ P (ab) ;
µP (a) ≡ P (µa), µ ∈ C (2.27)

∆(P (a)) ≡ (P ⊗ P )∆N+2(a) ; ε(P (a)) ≡ εN+2(a) ;
κ(P (a)) ≡ P (κN+2(a)) (2.28)

where we indicate by ∆N+2, εN+2 and κN+2 the co-
structures of SOq,r(N + 2). Equations (2.6)–(2.17) have
been obtained in [15] by taking the P projection of the
RTT and CTT relations of Sq,r(N + 2), with the no-
tation u ≡ P (T ◦◦), v ≡ P (T ••), z ≡ P (T ◦•), x

a ≡
P (T a

•), ya ≡ P (T ◦a), T a
b ≡ P (T a

b) ; I ≡ P (I) ; 0 ≡
P (0), cf. (2.5).

Note 2.2: From the commutations (2.14) - (2.15) we see
that one can set u = I only when qa• = 1 for all a. From
qa• = r2/qa′• this implies also r = 1.

Note 2.3: Equations (2.10) are just the multiparamet-
ric orthogonal quantum plane commutations. Choosing as
free indices

(•b
••

)
in (2.2) yields zxb = qb•xbz and therefore

the (squared) length element L = xaCabx
b commutes with

the x elements. Similarly we find LT a
d = (qd•/r)2T a

dL
and Lu = r−2uL, Lv = r2vL.

Note 2.4: Two conjugations (i.e. algebra antihomomor-
phisms, coalgebra homomorphisms and involutions, satis-
fying κ(κ(T ∗)∗) = T ) exist on ISOq,r(N) , inherited from
the corresponding ones on SOq,r(N+2) [15,16]. We recall
here their action on the group generators TA

B and the
corresponding restrictions on the parameters:

– trivially as T ∗ = T ; corresponds to the real forms
ISOq,r(n, n;R) and ISOq,r(n, n+1;R). Compatibility
with the RTT relations (2.2) requires |qab| = |qa•| =
|r| = 1.

– Only for N = 2n even: (TA
B)∗ = DA

CT
C

DDD
B , D be-

ing the matrix that exchanges the index n with the
index n+ 1; extends to the inhomogeneous multipara-
metric case the conjugation proposed by the authors of
[26] for SOq(2n,C), and corresponds to the real form
ISOq,r(n+ 1, n− 1;R).

Explicitly: (T a
b)
∗ = Da

cT
c

dDd
b, (x

a)∗ = Da
bx

b, u∗ =
u, v∗ = v, z∗ = z. Compatibility with the RTT relations
(2.2) requires:

(R̄)n↔n+1 = R−1, i.e. D1D2R12D1D2 = R
−1
12 (2.29)

which implies |r| = 1; |qa•| = 1 for a 6= n, n+ 1; |qab| = 1
for a and b both different from n or n + 1; qab/r ∈ R
when at least one of the indices a, b is equal to n or n+1;
qa•/r ∈ R for a = n or a = n+ 1. Compatibility with the
CTT relations (2.3) is ensured by DCD and C̄ = CT (due
to |r| = 1).

In particular, the quantum Poincaré group ISOq,r

(3, 1;R) is obtained by setting |q1•| = |r| = 1, q2•/r ∈ R,
q12/r ∈ R.

According to Note 2.2, a dilatation-free q-Poincaré
group is found after the further restrictions q1• = q2• =
r = 1. The only free parameter remaining is then q12 ∈ R.

3 Bicovariant calculus on simple q-groups

The bicovariant differential calculus on the q-groups of
the A,B,C,D series can be formulated in terms of the
corresponding R-matrix, or equivalently in terms of the
L± functionals defined by:

L±A
B(TC

D) = (R±)AC
BD , L±A

B(I) = δA
B (3.1)

with 1

(R+)AC
BD ≡ RCA

DB , (R−)AC
BD ≡ (R−1)AC

BD . (3.2)

To extend the definition (3.1) to the whole Hopf algebra
A we set

L±A
B(ab) = L±A

C(a)L±C
B(b) ∀a, b ∈ A . (3.3)

These functionals generate the Hopf algebra A′ paired to
A, with ∆′(L±A

B) = L±A
C ⊗ L±C

B , ε′(L±A
B) = δA

B and
κ′(L±) = (L±)−1.

1 for the B, C, D series. For the q-groups of the A series there
is more freedom in choosing R+ and R−, see for ex. [13]
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We briefly recall how to construct a bicovariant cal-
culus. The general procedure can be found in [7,12], or,
in the notations we adopt here, in [10]. It realizes the ax-
iomatic construction of [5].

The functionals

f A2B1
A1 B2

≡ κ(L+B1
A1

)L−A2
B2
. (3.4)

and the elements of A:

MB1 A2
B2A1

≡ TB1
A1
κ(TA2

B2
). (3.5)

satisfy the following relations, called bicovariant bimodule
conditions, where for simplicity we use the adjoint indices
i, j, k, ... with i = B

A , i = A
B :

∆′(f i
j) = f i

k ⊗ fk
j ; ε′(f i

j) = δi
j , (3.6)

∆(M i
j ) = M l

j ⊗M i
l ; ε(M i

j ) = δi
j , (3.7)

M j
i (a ∗ f i

k) = (f j
i ∗ a)M i

k (3.8)

The star product between a functional on A and an ele-
ment of A is defined as:

χ∗a ≡ (id⊗χ)∆(a), a∗χ ≡ (χ⊗id)∆(a), a ∈ A, χ ∈ A′
(3.9)

Relation (3.8) is easily checked for a = TA
B since in this

case it is implied by the RTT relations; it holds for a
generic a because of property (3.6).

The space of quantum one-forms is defined as a left
A-module Γ freely generated by the symbols ω A2

A1
:

Γ ≡ {aA1
A2
ω A2

A1
} , aA1

A2
∈ A (3.10)

Theorem 3.1 (due to Woronowicz, see last ref. in [5]):
because of the properties (3.6), Γ becomes a bimodule
over A with the following right multiplication:

ω A2
A1

a = (f A2B1
A1 B2

∗ a) ω B2
B1

, (3.11)

in particular:

ω A2
A1

TR
S = (R−1)TB1

CA1
(R−1)A2C

B2ST
R

Tω
B2

B1
(3.12)

Moreover, because of properties (3.7) and (3.8), we can
define a left and a right action of A on Γ :

∆L : Γ → A ⊗ Γ ;
∆L(aω A2

A1
b) ≡ ∆(a) (I ⊗ ω A2

A1
)∆(b) , (3.13)

∆R : Γ → Γ ⊗ A ;
∆R(aω A2

A1
b) ≡ ∆(a) (ω B2

B1
⊗MB1 A2

B2A1
)∆(b) . (3.14)

These actions commute, i.e. (id⊗∆R)∆L = (∆L ⊗ id)∆R,
and give a bicovariant bimodule structure to Γ . [Property
(3.8) is a sufficient and necessary condition for ∆R(ρb) =
∆R(ρ)∆(b)].

The elements M i
j can be used to build a right-

invariant basis of Γ . Indeed the ηi defined by

ηi ≡ κ−1(M i
j )ωj (3.15)

are right invariant:∆R(ηi) = ηi⊗I [use κ−1(a2)a1 = ε(a)];
moreover every element of Γ can be written as ρ = ηibi or
aiη

i where bi and ai are uniquely determined. It can be
shown that the functionals f i

j satisfy:

ηib = (b ∗ f i
j)η

j (3.16)

aηi = ηj [a ∗ (f i
j ◦ κ)], (3.17)

where a ∗ f ≡ (f ⊗ id)∆(a).

The exterior derivative d : A −→ Γ can be defined
via the element τ ≡ ∑

A ω
A

A ∈ Γ . This element is easily
shown to be left and right-invariant:

∆L(τ) = I ⊗ τ ; ∆R(τ) = τ ⊗ I (3.18)

and defines the derivative d by

da =
1

r − r−1 [τa− aτ ]. (3.19)

The factor 1
r−r−1 is necessary for a correct classical limit

r → 1. It is immediate to prove the Leibniz rule

d(ab) = (da)b+ a(db), ∀a, b ∈ A . (3.20)

Two other expressions for the derivative are given by:

da = (χA1
A2

∗ a) ω A2
A1

, (3.21)

da = −η A2
A1

(a ∗ κ′(χA1
A2

) ) (3.22)

where the linearly independent elements

χA
B =

1
r − r−1 [f CA

C B − δA
Bε] (3.23)

are the tangent vectors such that the left-invariant vector
fields χA

B∗ are dual to the left-invariant one-forms ω A2
A1

,
and similarly the right-invariant vector fields ∗κ′(χA1

A2
) are

dual to the right-invariant one forms −η A2
A1

. The equiva-
lence of (3.19) and (3.21) can be shown by using the rule
(3.11) for τa in the right-hand side of (3.19). Expression
(3.22) is related to (3.21) via χi ∗ a = (a ∗ χj)κ−1(Mi

j),
Eqs. (3.15), (3.17) and κ′(χi) = −χjκ

′(f j
i).

Using (3.21) we can compute the exterior derivative on
the basis elements TA

B :

d TA
B =

1
r − r−1 [(R−1)CR

ET (R−1)TE
SBT

A
C

−δR
S T

A
B ] ω S

R (3.24)

Every element ρ of Γ , which by definition is written in a
unique way as ρ = aA1

A2ω
A2

A1
, can also be written as

ρ =
∑

k

akdbk (3.25)

for some ak, bk belonging to A. This can be proven directly
by inverting the relation (3.24).
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Due to the bi-invariance of τ the derivative operator d
is compatible with the actions ∆L and ∆R:

∆L(adb) = ∆(a)(id⊗ d)∆(b) ,
∆R(adb) = ∆(a)(d⊗ id)∆(b) , (3.26)

these two properties express the fact that d commutes with
the left and right action of the quantum group, as in the
classical case.

Remark : The properties (3.20), (3.25) and (3.26) of the
exterior derivative (3.21) realize the axioms of a first-order
bicovariant differential calculus [5].

The tensor product between elements ρ, ρ′ ∈ Γ is
defined to have the properties ρa⊗ρ′ = ρ⊗aρ′, a(ρ⊗ρ′) =
(aρ) ⊗ ρ′ and (ρ⊗ ρ′)a = ρ⊗ (ρ′a). Left and right actions
on Γ ⊗ Γ are defined by:

∆L(ρ⊗ ρ′) ≡ ρ1ρ
′
1 ⊗ ρ2 ⊗ ρ′2,

∆L : Γ ⊗ Γ → A ⊗ Γ ⊗ Γ (3.27)
∆R(ρ⊗ ρ′) ≡ ρ1 ⊗ ρ′1 ⊗ ρ2ρ

′
2,

∆R : Γ ⊗ Γ → Γ ⊗ Γ ⊗ A (3.28)

where ρ1, ρ2, etc., are defined by:

∆L(ρ) = ρ1 ⊗ ρ2, ρ1 ∈ A, ρ2 ∈ Γ ;
∆R(ρ) = ρ1 ⊗ ρ2, ρ1 ∈ Γ, ρ2 ∈ A .

The extension to Γ⊗n is straightforward.

The exterior product of one-forms is consistently
defined as:

ω A2
A1

∧ ω D2
D1

≡ ω A2
A1

⊗ ω D2
D1

− Λ A2 D2
A1 D1

|C1 B1
C2 B2

ω C2
C1

⊗ ω B2
B1

(3.29)

where the Λ tensor is given by:

Λ A2 D2
A1 D1

|C1 B1
C2 B2

≡ f A2B1
A1 B2

(MC1 D2
C2D1

)

= dF2d−1
C2
RF2B1

C2G1
(R−1)C1G1

E1A1

×(R−1)A2E1
G2D1

RG2D2
B2F2

(3.30)

dA being the entries of the diagonal matrix DA
B ≡

CACCBC . From the formula (3.29) we can find the q-com-
mutations (generalizing the classical anticommutations) of
products of one-forms ω in terms of a “flip” operator (see
the second ref. in [11]):

ωi ∧ ωj = −Zij
klω

k ∧ ωl (3.31)

Using the exterior product we can define the exterior
differential on Γ :

d : Γ → Γ ∧ Γ ; d(akdbk) = dak ∧ dbk (3.32)

which can easily be extended to Γ∧n (d : Γ∧n → Γ∧(n+1),
Γ∧n being defined as in the classical case but with the

quantum permutation (braid) operator Λ [5]). The defini-
tion (3.32) is equivalent to the following :

dθ =
1

r − r−1 [τ ∧ θ − (−1)kθ ∧ τ ], (3.33)

where θ ∈ Γ∧k. The exterior differential has the following
properties:

d(θ ∧ θ′) = dθ ∧ θ′ + (−1)kθ ∧ dθ′ ;
d(dθ) = 0 , (3.34)

∆L(θdθ′) = ∆L(θ)(id⊗ d)∆L(θ′) ;
∆R(θdθ′) = ∆R(θ)(d⊗ id)∆R(θ′), (3.35)

where θ ∈ Γ∧k, θ′ ∈ Γ∧n.

The q -Cartan-Maurer equations are found by us-
ing (3.33) in computing dω C2

C1
:

dω C2
C1

=
1

r − r−1 (ω B
B ∧ ω C2

C1
+ ω C2

C1
∧ ω B

B )

≡ −1
2
CA1 B1

A2 B2
| C2
C1

ω A2
A1

∧ ω B2
B1

(3.36)

with:

CA1 B1
A2 B2

| C2
C1

= − 2
(r − r−1)

[Z B C2
B C1

|A1 B1
A2 B2

+ δA1
C1
δC2
A2
δB1
B2

]

(3.37)
To derive this formula we have used the flip operator Z
on ω B

B ∧ ω C2
C1

.

Finally, we recall that the χ operators close on the
q-Lie algebra :

χiχj − Λkl
ijχkχl = C k

ij χk (3.38)

where the q-structure constants are given by

C i
jk = χk(M i

j ) explicitly :

CA1 B1
A2 B2

| C2
C1

=
1

r − r−1 [−δB1
B2
δA1
C1
δC2
A2

+Λ B C2
B C1

|A1 B1
A2 B2

]. (3.39)

The C structure constants appearing in the Cartan-Mau-
rer equations are in general related to the C constants of
the q-Lie algebra [10]:

C i
jk =

1
2
[C i

jk − Λrs
jkC

i
rs ] . (3.40)

Using the definitions (3.23) and (3.4) it is not difficult
to find the co-structures on the functionals χ and f :

∆′(χi) = χj ⊗ f j
i + ε⊗ χi ; ∆′(f i

j) = f i
k ⊗ fk

j ,

ε′(χi) = 0 ; ε′(f i
j) = δi

j , (3.41)

κ′(χi) = −χjκ
′(f j

i) ; κ′(fk
j)f

j
i = δk

i ε = fk
jκ
′(f j

i) .
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Note that in the r, q → 1 limit f i
j → δi

jε, i.e. f i
j becomes

proportional to the identity functional and formula (3.11),
becomes trivial, e.g. ωia = aωi [use ε ∗ a = a].

The ∗-conjugation on A is canonically extended to a
conjugation on the Hopf algebra A′ generated by the L±
functional and paired to A. The relation is

φ∗(a) ≡ φ(κ−1(a∗)) (3.42)

where the overline denotes complex conjugation. Explic-
itly, on the χ functionals it reads 2 [16]

(χA
B)∗ = −r−N−1χC

DDF
BDA

GR
EG

FCD
D
E for

SOq,r(n+ 2, n;R) ; 2n+ 2 = N + 2 (3.43)

with DD
E ≡ CDFCEF . Since the conjugation is a linear

operation on the q-Lie algebra, it can be extended via
(3.21) to the differential calculus as well [5,18]. The unique
antilinear involution ∗ on Γ satisfies:

(aρ)∗ = ρ∗a∗, (ρa)∗ = a∗ρ∗, (da)∗ = d(a∗); (3.44)
∆L(ρ∗) = ∆L(ρ)∗, ∆R(ρ∗) = ∆R(ρ)∗ (3.45)

where (a ⊗ ρ)∗ = a∗ ⊗ ρ∗ and (ρ ⊗ a)∗ = ρ∗ ⊗ a∗. It
easily extends to Γ∧n, for ex. (dθ)∗ = dθ∗ etc. Inverting
formulae (3.24) one can also find the induced conjugation
on the left-invariant one-forms [16]. The explicit relation
between the ∗-structures on the χ and on the ω can be
given using the duality 〈ω B

A , χC
D〉 = δC

Aδ
B
D between left-

invariant vector fields and left-invariant one-forms [18]:

〈ω B
A

∗
, χC

D〉 = −〈ω B
A , χC

D
∗〉 . (3.46)

4 Bicovariant differential calculus
on ISOq,r(N)

The existence of this calculus is simply due to the exis-
tence of a subset of the functionals (3.4), vanishing on the
Hopf ideal H (see Sect. 2) , and M elements that satisfy
the bicovariant bimodule conditions (3.6)-(3.8). These are:

f ◦•• ◦ , f a•
• ◦ , f ••• ◦ , f a•

• b , f ••• b , f ••• • (4.1)

P (M• ◦
◦• ) = v2

P (M• d
◦• ) = 0

P (M• •
◦• ) = 0

P (M• ◦
b• ) = vr−

N
2 xeCeb

P (M• d
b• ) = vκ(T d

b)
P (M• •

b• ) = 0

P (M• ◦
•• ) = − 1

rN (r
N
2 + r−

N
2 +2)

xeCefx
f

P (M• d
•• ) = vκ(xd)

P (M• •
•• ) = I (4.2)

2 We correct here a misprint of [16] where the factor r−N+1

instead of r−N−1 appears. Notice that there we have used the
opposite convention φ∗(a) ≡ φ(κ(a∗)) instead of (3.42).

Notice that only the couples of indices (•◦), (•b) and (••)
appear in (4.1)-(4.2): these are therefore the only indices
involved in the projected differential calculus on
ISOq,r(N).

Theorem 4.1: the functionals f i
j in (4.1) annihilate the

Hopf ideal H.

Proof: one first checks directly that the functionals (4.1)
vanish on the generators T of the ideal H, i.e. on T =
T a
◦, T

•
b, T
•
◦. This extends to any element of H =

Ker(P ), because of the property (3.6). Q.E.D.

These functionals are then well defined on the quotient
ISOq,r(N) = SOq,r(N+2)/Ker(H), in the sense that the
“projected” functionals

f̄ : ISOq,r(N) → C, f̄(P (a)) ≡ f(a) ,
∀a ∈ SOq,r(N + 2) (4.3)

are well defined. Indeed if P (a) = P (b), then f(a) = f(b)
because f(Ker(P )) = 0. This holds for any functional f
vanishing on Ker(P ).

The product fg of two generic functionals vanishing
on KerP also vanishes on KerP , because KerP is a co-
ideal (see [15]): fg(KerP ) = (f ⊗ g)∆N+2(KerP ) = 0.
Therefore fg is well defined on ISOq,r(N); moreover, [use
(2.28)] fg[P (a)] ≡ fg(a) = (f̄ ⊗ ḡ)∆(P (a)) ≡ f̄ ḡ[P (a)],
and the product of f̄ and ḡ involves the coproduct ∆ of
ISOq,r(N).

There is a natural way to introduce a coproduct on the
f̄ ’s :

∆f̄ [P (a) ⊗ P (b)] ≡ f̄ [P (a)P (b)] = f̄ [P (ab)]
= f(ab) = ∆N+2f(a⊗ b) . (4.4)

It is also easy to show that

∆(f̄ i
j) = f̄ i

k ⊗ f̄k
j i.e.

f̄ i
j [P (a)P (b)] = f̄ i

k[P (a)]f̄k
j [P (b)] (4.5)

with i, j, k running over the restricted set of indices
•b, ••, •◦ . Indeed due to the vanishing of some f ’s (a con-
sequence of upper and lower triangularity of L+ and L−
respectively), formulae (3.41) and (3.6) involve only the
f i

j listed in (4.1). Then

f̄ i
j [P (a)P (b)] = f̄ i

j [P (ab)] = f i
j(ab) = f i

k(a)fk
j(b)

= f̄ i
k[P (a)]f̄k

j [P (b)] (4.6)

and (4.5) is proved.

With abuse of notations we will simply write f instead
of f̄ . Then the f in (4.1) will be seen as functionals on
ISOq,r(N).

Theorem 4.2: the left A-module (A = ISOq,r(N)) Γ
freely generated by ωi ≡ ω a

• , ω
•
• and ω ◦• is a bicovariant
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bimodule over ISOq,r(N) with right multiplication:

ωia = (f i
j ∗ a)ωj , a ∈ ISOq,r(N) (4.7)

where the f i
j are given in (4.1), the ∗-product is com-

puted with the co-product ∆ of ISOq,r(N), and the left
and right actions of ISOq,r(N) on Γ are given by

∆L(aiω
i) ≡ ∆(ai)I ⊗ ωi (4.8)

∆R(aiω
i) ≡ ∆(ai)ωj ⊗M i

j (4.9)

where the M i
j are given in (4.2).

Proof: by showing that the functionals f and the elements
M listed in (4.1) and (4.2) satisfy the properties (3.6)-(3.8)
(cf. Theorem 3.1). It is straightforward to verify directly
that the elements M in (4.2) do satisfy the properties
(3.7). We have already shown that the functionals f in
(4.1) satisfy (3.6) (ε(f i

j) = δi
j obviously also holds for

this subset).
Consider now the last property (3.8). We know that it

holds for SOq,r(N+2). Take the free indices j and k as •b,
•• and •◦, and apply the projection P on both members
of the equation. It is an easy matter to show that only
the f ’s in (4.1) and the M ’s in (4.2) enter the sums: this
is due to the vanishing of some P (M) and to some f ’s.
We still have to prove that the ∗ product in (3.8) can be
computed via the coproduct ∆ in ISOq,r(N). Consider
the projection of property (3.8), written symbolically as:

P [M(f ⊗ id)∆N+2(a)] = P [(id⊗ f)∆N+2(a)M ] . (4.10)

Now apply the definition (4.3) and the first of (2.28) to
rewrite (4.10) as

P (M)(f̄ ⊗ id)∆(P (a)) = (id⊗ f̄)∆(P (a))P (M) . (4.11)

This projected equation then becomes property (3.8) for
the ISOq,r(N) functionals f and adjoint elementsM , with
the correct coproduct ∆ of ISOq,r(N). Q.E.D.

To simplify notations, we write the composite indices
as follows:

•a → a, •• → •, •◦ → ◦; •
a → a,

•• → •, •◦ → ◦
(4.12)

Similarly we’ll write qb instead of qb•.

Using the general formula (4.7) we can deduce the ω, T
commutations for ISOq,r(N):

ωbT c
d =

qf
r

(R−1)bf
edT

c
fω

e (4.13)

ωbxc =
qb
r2
xcωb + λr

N
2 −1qdC

bdT c
dω
◦ (4.14)

ωbu =
r2

qb
u ωb (4.15)

ωbv =
qb
r2
v ωb (4.16)

ω•T c
d = T c

dω
• (4.17)

ω•xc =
1
r2
xcω• − λ

qb
r
T c

bω
b (4.18)

ω•u = r2uω• (4.19)
ω•v = r−2vω• (4.20)
ω◦T c

d = q2dr
−2T c

dω
◦ (4.21)

ω◦xc = xcω◦ (4.22)
ω◦u = uω◦ (4.23)
ω◦v = vω◦ (4.24)

where λ ≡ r − r−1.

Note 4.1: u commutes with all ω ’s only if r = qa = 1
(cf. Note 2.2). This means that u = I is consistent with
the differential calculus on ISOqab;r=qa=1(N).

The 1-form τ ≡ ω• ≡ ω •• is bi-invariant, as one can
check by using (4.8)-(4.9). Then an exterior derivative on
ISOq,r(N) can be defined as in Eq. (3.19), and satisfies
the Leibniz rule. The alternative expression da = (χi∗a)ωi

(cf. (3.21)) continues to hold, where

χb =
1

r − r−1 f
•
b

χ◦ =
1

r − r−1 f
•
◦

χ• =
1

r − r−1 [f•• − ε] (4.25)

are the left-invariant vectors dual to the left-invariant 1-
forms ωb, ω• and ω◦. As a consequence of (4.5) their co-
product is given by

∆(χb) = χ• ⊗ f•b + χc ⊗ fc
b + ε⊗ χb (4.26)

∆(χ•) = χ• ⊗ f•• + ε⊗ χ• (4.27)
∆(χ◦) = χ◦ ⊗ f◦◦ + χ• ⊗ f•◦ + χc ⊗ fc

◦
+ε⊗ χ◦ (4.28)

The exterior derivative on the generators of ISOq,r(N)
reads:

dT c
d = 0 (4.29)

dxc = −qbr−1T c
bω

b − r−1xcω• (4.30)
du = ruω• (4.31)
dv = −r−1vω• (4.32)

dz = −qbr−1ybω
b − r(1 − rN )uω◦ − r−1zω• (4.33)

where we have included the exterior derivative on z for
convenience. Note that the calculus is trivial on the
SOq,r(N) subgroup of ISOq,r(N), as is evident from
(4.29). Thus effectively we are discussing a bicovariant
calculus on the orthogonal q-plane generated by the co-
ordinates xa and the “dilatations” u, v.

Every element ρ of Γ can be written as ρ =
∑

k akdbk
for some ak, bk belonging to ISOq,r(N). Indeed inverting
the relations (4.30)-(4.33) yields:

ωa = − r

qa•
κ(T a

c)[dx
c − xcudv] (4.34)
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ω• = −rudv = r−1vdu (4.35)

ω◦ = −vdz + r−Nzdv + r−
N
2 Cabx

adxb

r(1 − rN )
(4.36)

Finally, the two properties (3.26) hold also for ISOq,r(N),
because of the bi-invariance of τ = ω•. Thus all the ax-
ioms for a bicovariant first order differential calculus on
ISOq,r(N) are satisfied.

The exterior product of left-invariant one-forms is de-
fined as

ωi ∧ ωj ≡ ωi ⊗ ωj − Λij
klω

k ⊗ ωl (4.37)

where
Λij

kl = f i
l(M

j
k ) (4.38)

This Λ tensor can in fact be obtained from the one of
SOq,r(N + 2) by restricting its indices to the subset
•b, ••, •◦. This is true because when i, l = •b, ••, •◦ we have
f i

l(KerP ) = 0 so that f i
l is well defined on ISOq,r(N),

and we can write f i
l(M

j
k ) = f̄ i

l[P (M j
k )] (see discussion

after Theorem 4.1). The non-vanishing components of Λ
read:

Λad
cb = qa

qc
r−1Rad

bc Λ•◦ cb = − r− N
2 −1

qc
λCbc

Λ•d c• = r−2δd
c Λa◦

c◦ = r−1λδa
c

Λ◦d c◦ = ( r
qc

)2δd
c Λa•

•b = δa
b

Λ•d •b = r−1λδd
b Λa◦

◦b = r−4(qa)2δa
b

Λ•• •• = 1 Λad
•◦ = −qar−N

2 −1λCda

Λ•◦ •◦ = λr−1(1 − r−N ) Λ◦• •◦ = 1
Λ•◦ ◦• = r−4 Λ◦◦ ◦◦ = 1

From (4.37) it is not difficult to deduce the commutations
between the ω’s:

1
qc
P ab

S cd ω
d ∧ ωc = 0 (4.39)

ωa ∧ ω• = −r2ω• ∧ ωa (4.40)
ωa ∧ ω◦ = −r−4(qa)2ω◦ ∧ ωa (4.41)
ω• ∧ ω• = ω◦ ∧ ω◦ = 0 (4.42)
ω• ∧ ω◦ = −r−4ω◦ ∧ ω•

+
λr−

N
2 −1

qa(1 − r−N )
Cba ω

a ∧ ωb (4.43)

where PS is the q-symmetrizer given in Appendix B. No-
tice that the dimension of the space of 2-forms gener-
ated by ωa ∧ ωb is larger than in the commutative case
since PS projects into an N(N + 1)/2 − 1 (and not into
an N(N + 1)/2) dimensional space. This is not surpris-
ing since the exterior algebra of homogeneous orthogonal
quantum groups is known to be larger than its classical
counterpart.

The exterior differential on Γ∧n can be defined as in
Sect. 4 (Eq. (3.33)), and satisfies all the properties (3.34),
(3.35). As for SOq,r(N + 2) the last two hold because of
the bi-invariance of τ ≡ ω•.

The Cartan-Maurer equations

dωi =
1

r − r−1 (τ ∧ ωi + ωi ∧ τ) (4.44)

can be explicitly found after use of the commutations
(4.39)- (4.43):

dωa = r−1ωa ∧ ω• (4.45)
dω• = 0 (4.46)
dω◦ = −r(1 + r2)ω• ∧ ω◦

+
r3

r
N
2 − r−

N
2

Cba

qa
ωa ∧ ωb (4.47)

The nonvanishing structure constants C (appearing in the
q-Lie algebra , see below), given by C i

jk = χk(M i
j ), read:

C ◦
ab = −q−1

a r−
N
2 −1Cba C c

a• = −r−1δc
a

C c
•b = r−1δc

b C ◦
◦• = −r−3(1 + r2)

C ◦
•◦ = r−1(1 − r−N )

These structure constants can be obtained from those of
SOq,r(N + 2) by specializing indices, for essentially the
same reason as for the Λ components.

Using the values of the Λ and C tensors given above,
we can explicitly write the q-Lie algebra of translations
and dilatations on ISOq,r(N) as:

χ◦χb − q2br
−4 χbχ◦ = 0 (4.48)

χcχ• − r−2χ•χc = −r−1χc (4.49)

χ◦χ• − r−4χ•χ◦ =
−(1 + r2)

r3
χ◦ (4.50)

qaP
ab
A cdχbχa = 0 (4.51)

A combination of the above relations yields:

χ◦ + λ χ•χ◦ = λ
−qar−N

2

r−2 + r−N
χaC

baχb (4.52)

Notice the similar structure of Eqs. (2.17) and (4.52).

The *-conjugation on the χ functionals and on the
one-forms ω can be deduced from (3.43) [use (qf )−1Df

b

= qbDf
b]

(χb)∗ = −r−NDf
b

1
qf
Dd

fχd = −r−NqbDf
bD

d
fχd

= −r−NqbD
f
bDd

fχd (4.53)

(χ•)∗ = −χ• (4.54)

(χ◦)∗ = −r−2N−2χ◦ (4.55)

whereas the conjugation on the ω one-forms can be de-
duced from (3.46) and (4.53)- (4.55) or directly from their
expression in terms of dx, du, dv differentials (4.34)-(4.36)
remembering that (da)∗ = d(a∗):

(ωa)∗ = qa
−1rN (D−1)a

bDb
c

= qa
−1rNDa

b(D
−1)b

cω
c (4.56)

(ω•)∗ = ω• (4.57)

(ω◦)∗ = r2N+2ω◦ . (4.58)
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5 Calculus on the multiparametric orthogonal
quantum plane: coordinates, differentials
and partial derivatives

5.1 ISOq,r(N) bicovariant calculus

In this section we concentrate on the orthogonal quantum
plane

M ≡ Funq,r

(
ISO(N)
SO(N)

)
, (5.1)

i.e. the ISOq,r(N) subalgebra generated by the coordi-
nates xa and the dilatations u, v.

We study the action of the exterior differential d on M
and the corresponding space ΓM of 1-forms. ΓM is the sub-
bimodule of Γ formed by all the elements adb or (da′)b′
where a, b, a′, b′ are polynomials in xa, u and v [of course
adb = d(ab) − (da)b].

We will see that a generic element ρ of ΓM cannot be
generated, as a left module, only by the differentials dx, dv,
i.e. it cannot be written as ρ = aidx

i + adv. We need
also to introduce the differential dz (or equivalently dL ≡
d(xaCabx

b)). Thus the basis of differentials is given by
dxa, dv, dz and corresponds to the intrinsic basis of inde-
pendent one-forms ωa, ω• and ω◦. Note that du can be ex-
pressed in terms of dv since du = −u(dv)u = −r2u2dv =
−r−2(dv)u2 [ see (5.70) below].

Commutations

The commutations between the coordinates xa, u and v
have been given in Sect. 2. The commutations between
coordinates and differentials are found by expressing the
differentials in terms of the one-forms ω as in (4.30)-(4.33),
and using then the x, u, v commutations with the ω’s given
in (4.13)-(4.24). The resulting q-commutations between x
and dx are found to be:

(r−2PS − PA)(x⊗ dx) = (PS + PA)(dx⊗ x) (5.2)

where the projectors PS and PA are defined in (B.4), and
we have used the tensor notation Aab

cdx
cdxd ≡ A(x⊗ dx)

etc. The remaining commutations are given in formulae
(5.67)–(5.78) in Table 1.

Let us consider the above formula, giving the x, dx
commutations. If we multiply it by P0 we find 0 = 0. Thus
from this equation we have no information on P0(x⊗ dx).
Applying instead the projectors PS and PA yields

PS(x⊗dx) = r2PS(dx⊗x) ; PA(x⊗dx) = −PA(dx⊗x)
(5.3)

which does not allow to express xadxb only in terms of
linear combinations of (dx)x since no linear combination of
PS and PA is invertible. The space of 1-forms has therefore
one more dimension than his classical analogue because
we are missing a condition involving the one dimensional
projector P ab

0 ef = QN (r)CabC ef , see (B.4).
However, if we consider the 1-form dL ≡ d(xeCefx

f ) –
an exterior derivative of polynomials in the basic elements
– we can write the commutations between the x and dx

elements as follows:

dx⊗ x = −(PS + PA + P0)x⊗ dx+ (PS + PA)d(x⊗ x)
+P0d(x⊗ x)

= PSdx⊗ x+ PAdx⊗ x− P0x⊗ dx+ P0d(x⊗ x)
= (r−2PS − PA − P0)x⊗ dx+ P0d(x⊗ x) (5.4)

where we have used the Leibniz rule, the commutations
(5.3) and PS + PA + P0 = I. Equivalently we have

dx⊗ x = (r−2PS − PA − P0)x⊗ dx

−C r
N
2 −2(1 − r2)

1 − rN
(vdz + zdv) (5.5)

involving the dv and dz differentials.

The presence of dz can also be explained within the
general theory by recalling that Γ is a free right module
[see paragraph following (3.15)]. A basis of right invariant
1-forms is given by (3.15) and we explicitly have:

ηa = −r−1dxa u = −r−1dT a
• κ(T

•
•) (5.6)

η• = −r−1dv u = −r−1dT •• κ(T
•
•) (5.7)

η◦ =
r

N
2 −1

(1 − rN )(1 + rN−2)

×[dxeCefx
f − rN−2xeCefdx

f ]u2 (5.8)

=
−rN−1

rN − 1
[dz u+ dyb κ(xb) + duκ(z)]

=
−rN−1

rN − 1
dT ◦B κ(T

B
•) (5.9)

To derive the expression for η◦ use: yb = −r−N
2 uxeCefT

f
b;

dyb κ(xb) = r−
N
2 duxxu+r−

N
2 dxxu2; dz = d( −r− N

2

1+r2−N uxx)

= −r− N
2

1+r2−N (duxx+dxxu+xdxu); κ(z) = κ(T ◦•) = r−Nz;
uxx = r2xxu; udxx = dxxu, where xx ≡ L ≡ xeCefx

f .
The 1-forms (5.7)-(5.8) in Γ do not contain any T a

b el-
ement and therefore belong to ΓM as well; they are linearly
independent and freely generate ΓM as a right module be-
cause they freely generate the full Γ as a right module. The
extra 1-form η◦ (or dz) is therefore a natural consequence
of the right module structure of Γ .

In summary: either dL or dz or η◦ are necessary in or-
der to close the commutation algebra between coordinates
and differentials. Thus the commutations involving z and
dz appear in Table 1.

We have seen that dv u; dxa u and η◦ freely generate
ΓM as a right module; recalling that Γ is also a free left
module, we have the :

Proposition 5.1 The M -bimodule ΓM , as a left mod-
ule (or as a right module), is freely generated by the
differentials dx, dL (or dz) and dv. Proof: to show that
aidx

i + adL + a•dv = 0 ⇒ ai = 0, a = 0, a• = 0 express
dxi, dL, dv in terms of ωa, ω◦ω•, see (4.30)-(4.33), and re-
call that Γ is a free left module.
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Note 5.1 From (5.67), (5.68) and the commutations of
L with x and u we have xcdL = dLxc, udL = dLu and
vdL = dL v. These relations and (5.66) show that inside
ΓM there is the smaller bimodule generated by the differ-
entials dxa and dL.

We now examine the space of 2-forms. By simply ap-
plying the exterior derivative d to the relations (5.66)-
(5.78) we deduce the commutations between the differen-
tials given in Table 1. As with the ωa’s in Eq. (4.39), the
relations in (5.79) are not sufficient to order the differen-
tials dxa.

ISOq,r(N) - coactions

All the relations we have been deriving have many sym-
metries properties because they are covariant under the
actions on M and Γ of the full ISOq,r(N) q-group. In
fact we have the following three ISOq,r(N) actions:
1) the coproduct of ISOq,r(N) can be seen as a left-

coaction ∆ : M → ISOq,r(N) ⊗M :

∆xa = T a
b ⊗ xb + xa ⊗ v (5.10)

2) the left coaction ∆L : Γ → ISOq,r(N) ⊗ Γ , when
restricted to ΓM gives

∆L|
ΓM

: ΓM → ISOq,r(N) ⊗ ΓM (5.11)

and defines a left coaction of ISOq,r(N) on ΓM com-
patible with the bimodule structure of ΓM and the
exterior differential: ∆L|

ΓM
(adb) = ∆(a)(id⊗ d)∆(b).

3) the right coaction ∆R : Γ → Γ ⊗ ISOq,r(N) does not
become a right coaction of ISOq,r(N) on ΓM ; however
we have

∆R|
ΓM

: ΓM → Γ ⊗M ⊂ Γ ⊗ ISOq,r(N) (5.12)

this map is obviously well defined and satisfies
∆R|

ΓM
(adb) = ∆(a)(d⊗ id)∆(b) ∀a, b ∈ M since M ⊂

ISOq,r(N).
We call this calculus ISOq,r(N)-bicovariant because

∆L|
ΓM

and ∆R|
ΓM

are compatible with the bimodule
structure of ΓM and with the exterior differential.

Partial derivatives

The tangent vectors χ in (4.25) and the corresponding
vector fields χ∗ have “flat” indices. To compare χ∗ with
partial derivative operators with “curved” indices, we need
to define the operators

←
∂ :

←
∂c (a) ≡ − r

qb
(χb ∗ a)κ(T b

c)

− r−
N
2

r(1 − rN )
(χ◦ ∗ a)Cbcx

b, (5.13)

←
∂ •(a) ≡ r

qb
(χb ∗ a)κ(T b

c)x
cu

−r(χ• ∗ a)u− r−N

r(1 − rN )
(χ◦ ∗ a)z (5.14)

←
∂ ◦(a) ≡ − 1

r(1 − rN )
(χ◦ ∗ a)v (5.15)

so that

d a =
←
∂c (a) dxc +

←
∂ •(a)dv+

←
∂ ◦(a)dz ≡ ←

∂C(a)dxC (5.16)

[C = (◦, c, •), dxC = (dz, dxc, dv)] which is equation da =
(χc∗a)ωc+(χ•∗a)ω•+(χ◦∗a)ω◦ in “curved” indices. The

action of
←
∂C on the coordinates xC = (z, xc, v) is given by

←
∂C (xA) = δA

CI , (5.17)

From the Leibniz rule d(ab) = (da)b+ a(db), using (5.16)
and the fact that dxC = (dz, dxc, dv) is a basis for 1-forms,
we find for example:

←
∂ c(axb) = aδb

c +
←
∂ d(a)(r−2PS − PA − P0)db

ecx
e

−(1 − r2)
←
∂ •(a)δb

cv (5.18)

The tangent vector fields χc∗ of this paper and the partial
derivatives

←
∂ are derivative operators that act “from the

right to the left” as can be seen from the deformed Leibniz
rule (5.18). This explains the inverted arrow on

←
∂ .

Equation (5.18) gives the
←
∂ c, x

b commutations. The
rest of the

←
∂C , x

B commutations reads:
←
∂ •(axb) = q−1

b

←
∂ •(a)xb

−Ccb r
N
2 −2(1 − r2)
(1 − rN )

←
∂ c(a)z (5.19)

←
∂ ◦(axb) = qb

←
∂ ◦(a)xb

−Ccb r
N
2 −2(1 − r2)
(1 − rN )

←
∂ c(a)v (5.20)

←
∂ c(av) = r−2qc

←
∂ c(a)v (5.21)

←
∂ •(av) = r−2←

∂ •(a)v + a (5.22)
←
∂ ◦(av) =

←
∂ ◦(a)v (5.23)

←
∂ c(az) = q−1

c

←
∂ c(a)z (5.24)

←
∂ •(az) = r−2←

∂ •(a)z (5.25)
←
∂ ◦(az) = r2

←
∂ ◦(a)z + a+ (r−2 − 1)

←
∂ •(a)v (5.26)

We can also define derivative operators acting from the
left to the right, as in [23], using the antipode κ which is
antimultiplicative [one can also use (3.22)]. For a generic
quantum group the vectors −κ′−1(χi) ≡ −χi ◦ κ−1 act
from the left and we also have

d a = (χi ∗ a)ωi = ωi(−κ′−1(χi) ∗ a) (5.27)

as is seen from κ′(χi) = −χjκ
′(f j

i) and κ′−1(fk
j)f

i
k =

δi
j [third line of (3.41)].

We then define the partial derivatives ∂C so that

d a = dxC ∂C(a) . (5.28)

Again the action of ∂C on the coordinates is

∂C(xA) = δA
CI , (5.29)

The ∂C , x
B commutations are given in Table 1.
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5.2 SOq,r(N) bicovariant calculus

Commutations

Since the P ab
A cdx

cxd = 0 commutation relations allow for
an ordering of the coordinates (moreover the Poincaré se-
ries of the polynomials on the quantum orthogonal plane
is the same as the classical one), it is tempting to im-
pose extra conditions on the differential algebra of the
q-Minkowski plane, so that the space of 1-forms has the
same dimension as in the classical case. We require that
the commutation relations between x and dx close on the
algebra generated by x and dx:

dxaxb = αab
efx

edxf (5.30)

where α is an unknown matrix whose entries are complex
numbers. Any such matrix can be expanded as α = aPS +
bPA + cP0 with a, b, c = const. From (5.3) we have α =
r−2PS −PA + cP0; therefore condition (5.30) is equivalent
to

P0(dx⊗ x) = cP0(x⊗ dx) (5.31)

and supplements Eqs. (5.3). Taking its exterior derivative
leads to a supplementary condition on the dx, dx products
(for c 6= −1):

P0(dx ∧ dx) = 0 . (5.32)

From (5.79) and (5.32) it follows that dx ∧ dx = (PS +
PA +P0)(dx∧ dx) = PA(dx∧ dx), or [see the definition of
PA in (B.4)] :

dx ∧ dx = −rR̂ dx ∧ dx . (5.33)

which allows the ordering of dx, dx products.
Using (5.4), (5.31) and (B.3), we find

dx⊗ x = (r−2PS − PA)(x⊗ dx) + P0(dx⊗ x)
= (r−2PS − PA)(x⊗ dx) + cP0(x⊗ dx)

= (r−2PS − PA + rN−2P0)(x⊗ dx)

+(c− rN−2)P0(x⊗ dx)

= r−1R̂−1(x⊗ dx)

+(c− rN−2)P0(x⊗ dx) . (5.34)

The consistency of the commutation relations (5.33) and
(5.34) with the associativity condition on the triple
dxi dxj xk fixes c = rN−2 i.e.:

P0(dx⊗ x) = rN−2P0(x⊗ dx) ; (5.35)

the x, dx commutations (5.34) then become:

x⊗ dx = rR̂(dx⊗ x) (5.36)

and reproduce (in the uniparametric case) the known x, dx
commutations of the quantum orthogonal plane [24].

Coactions

This calculus is no more covariant under the ISOq,r(N)
action,

xa −→ T a
b⊗xb +xa⊗v , u −→ u⊗u, v −→ v⊗v (5.37)

but we are left with covariance under the SOq,r(N) action

xa −→ T a
b ⊗ xb . (5.38)

In other words, δL : Γ ′M → SOq,r ⊗Γ ′M defined by δL(adb)
= δ(c)(id⊗ d)δ(b) with δ(xa) = T a

b ⊗xb is a left coaction
of SOq,r(N) on the bimodule Γ ′M where Γ ′M is ΓM with
the extra condition (5.31) [cf. (5.11)]. Similarly, the map
δR(adb) = δ(a)(d⊗ id)δ(b) is well defined [cf. (5.12)].

Left covariance under (5.37) is broken only by (5.31).
Indeed, while relations (5.3) are left and right ISOq,r(N)-
covariant, the extra condition (5.31) is not left ISOq,r(N)-
covariant : ∆L[P0(dx⊗x)−cP0(x⊗dx)] 6= 0,∀c. It is right
ISOq,r(N)-covariant, ∆R[P0(dx ⊗ x) − cP0(x ⊗ dx)] =
0, only for c = rN−2, as can be seen using T b

ddx
a =

d(T b
dx

a) = r
qd
Rab

efdx
e T f

d and (B.6). Therefore the
choice c = rN−2 preserves the right coaction ∆R.

Note 5.2 We can reformulate the quotient procedure ΓM

→ Γ ′M in a more abstact setting by considering that ΓM

is a subbimodule of the bicovariant bimodule Γ . In (5.8)
we have expressed the xeCefdx

f ↔ dxeCefx
f commu-

tation via the right invariant 1-form η◦. A condition on
Γ (and therefore on ΓM ) that preserves right ISOq,r(N)
covariance, i.e. compatible with ∆R [as given in (4.9)],
is: η◦ linearly dependent from the remaining right invari-
ant 1-forms dv u and dxa u. It is easily seen that since
η◦ is quadratic in the basis elements xa the only possible
linear condition is η◦ = 0, and this gives exactly (5.35).
The M -bimodule Γ ′M is therefore generated by the dif-
ferentials dxb and dv. Since left ISOq,r(N) covariance is
broken (whereas right ISOq,r(N) covariance is preserved),
the relation between the left invariant 1-forms is nonlin-
ear. Explicitly we have

ω◦ = −qa
r2
vya ω

a +
r

N
2 −2

rN + r2
Cabx

axbω• (5.39)

[express dz in terms of dxi,dv in (4.36) and use the expan-
sion of dxb and dv on ωa and ω• as given in (4.30),(4.32)].

Partial derivatives

The relevant
←
∂ operators reduce to

←
∂ c,
←
∂ •, and the

←
∂C , x

b,
commutations become:

←
∂ c(axb) = aδb

c +
←
∂ d(a)r−1(R̂−1)db

ecx
e

−(1 − r2)
←
∂ •δb

cv (5.40)
←
∂ •(axb) = q−1

b

←
∂ •(a)xb (5.41)

while the
←
∂C , v commutations are unchanged. Note the

dilatation operator
←
∂ • appearing on the right-hand side

of (5.18) or (5.40). The ∂C , x
B commutations with C =

(c, •), B = (b, •) are collected in Table 2.
From d2(a) = 0 = d(

←
∂C(a)dxC) =

←
∂B(

←
∂C(a))dxB ∧

dxC and the q-commutations of the differentials (5.79)-
(5.85) one finds the commutations between the partial
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derivatives:

(PA)ab
cd

←
∂ a

←
∂ b = 0 (5.42)

←
∂ b

←
∂ • − qb

r2
←
∂ •
←
∂ b = 0 (5.43)

←
∂ b

←
∂ ◦ − qb

←
∂ ◦
←
∂ b = 0 (5.44)

←
∂ •
←
∂ ◦ − ←∂ ◦

←
∂ • = 0 (5.45)

Similarly the ∂A, ∂B commutations are given in Table 2.

We now give an explicit relation between the ∂c, ∂• and
the q-Lie algebra generators χ

c
, χ• (a similar expression

holds also for the
←
∂ derivatives). Recalling (3.22) we have:

d a = −ηC(a ∗ κ′(χ
C
)) (5.46)

where here C = (c, •) because we have set η◦ = 0. Putting
together (5.46) and (5.6),(5.7), the relations d a =
dxC ∂C(a) give, ∀a ∈ ISOq,r(N) :

∂c(a) = r−1u(a ∗ κ′(χc)) , ∂•(a) = r−1u(a ∗ κ′(χ•)) .
(5.47)

The commutations between the partial derivatives given
in Table 2 were obtained from d2 = 0, but can be also
derived via (5.47) and the q-Lie algebra (4.48)-(4.51).

Similarly we can introduce the right invariant vector
fields

hC ≡ hκ′(χC) ≡ [κ′(χ
C
) ⊗ id]∆ (5.48)

and use their Leibniz rule [which follows from∆(κ′(χ
C
)) =

κ′(χ
C
) ⊗ ε+ κ′(fD

C) ⊗ κ′(χ
D

) ]:

hC(ab) = hC(a) b+ κ′(fD
C)(a1) a2hD(b) (5.49)

to rederive the ∂, x, u commutations. For example we have
hax

b = rvδb
a + (r/qb)Reb

acx
che +rλh• that together with

∂C = r−1uhC (cf. (5.47)) gives

∂ax
b = δi

j [I + (r2 − 1)v∂•] + rReb
acx

c∂e .

Conjugation

The commutations in Table 2 are consistent under the
conjugation (already defined for xa and dxa)

(xa)∗ = Da
bx

b, (dxa)∗ = Da
bdx

b, (∂a)∗ = −rNd−1
b Db

a∂b

(5.50)
v∗ = v, (dv)∗ = dv, (∂•)∗ = u− ∂• (5.51)

where the entries da have been defined after (3.30). This
can be proved directly by taking the *-conjugates of the
relations in Table 2, and by using the identity (2.29) and:

C̄ = CT ; [QN (r)]∗ = QN (r); (5.52)

dcd−1
h Rcg

ha(R−1)ea
cd = δe

hδ
g
d ; Rab

cdd
adb = Rab

cdd
cdd

dcRcg
hc = rN−1δg

h; Rab
cdd
−1
a d−1

b = Rab
cdd
−1
c d−1

d

(5.53)

qa =
1
qa

for a 6= n, n+ 1, qn =
1

qn+1
(5.54)

We now derive the conjugation on the partial deriva-
tives from the differential calculus on ISOq,r(N). This is
achieved by studying the conjugation on the right invari-
ant vector fields h.

For a generic Hopf algebra, with tangent vectors χi,
we deduce the conjugation on h from the commutation
relations between h and a generic element of the Hopf
algebra:

hjb = hj(b) + κ′(fs
j)(b1) b2hs

= κ′(χj)(b1) b2 + κ′(fs
j)(b1) b2hs (5.55)

We multiply this expression by κ′2(f j
i)(b0) [where we

have used the notation (id ⊗ ∆)∆(b) = b0 ⊗ b1 ⊗ b2] to
obtain

κ′2(f j
i)(b1) hjb2 + κ′2(χi)(b1) b2 = bhi (5.56)

Now, using ψ(b) = [κ′(ψ)]∗(b∗) and then applying ∗ we
obtain (here a = b∗)

h∗ja = [κ′3(χj)]∗(a1) a2 + [κ′3(fs
j)]
∗(a1) a2hs . (5.57)

This last relation implies

h∗i ≡ [hκ′(χi)]
∗ = h[κ′3(χi)]∗ (5.58)

Notice that ∗◦κ′2 is a well defined conjugation since
(∗◦κ′2)2 = id.

We now apply formula (5.58), valid for a generic Hopf
algebra, to the ∗-conjugation and the right invariant vec-
tor fields of this section; we have:

[hκ′(χa)]∗ = −rNqad
−1
a Db

ahκ′(χb) (5.59)
[hκ′(χ•)]∗ = −hκ′(χ•) . (5.60)

From these last relations and ∂C = r−1uhC we finally
deduce (∂a)∗ = −d−1

b Db
ar

N∂b and (∂a)∗ = (∂•)∗ = u−∂•
as in (5.50), (5.51).

5.3 The reduced SOq,r(N)-bicovariant algebra
generated by xa, dxa, ∂a

Note that the algebra in Table 2 actually contains a sub-
algebra generated only by xa, dxa, ∂a: indeed ∂• vanishes
when acting on monomials containing only the coordi-
nates xb, as can be seen from (5.104). This calculus is
ISOq,r(N)-right covariant because it can also be obtained
imposing the conditions η• = 0 and χ• = 0 that are
compatible with the right coaction ∆R and the bimod-
ule structure given by the f i

j functionals.

Table 3 contains the multiparametric orthogonal quan-
tum plane algebra of coordinates, differentials and partial
derivatives, together with a consistent conjugation. We
emphasize here that this conjugation does not require an
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Table 1. the ISOq,r(N)-bicovariant xA, ∂A, dxA algebra

P ab
A cdxcxd = 0 (5.61)

xbv = qbvxb ; xbu = q−1
b uxb (5.62)

z = − 1

(r− N
2 + r

N
2 −2)

xbCbaxau (5.63)

zv = r2vz ; zu = r−2uz (5.64)
qaxaz = zxa (5.65)
(x ⊗ dx) = (r2PS − PA − P0)(dx ⊗ x) + P0d(x ⊗ x)(5.66)

xcdu =
1
qc

(du)xc − λ

r
(dxc)u;

xcdv = qc(dv)xc + λr(dxc)v (5.67)

xcdz =
1
qc

(dz)xc (5.68)

udxc =
qc

r2 (dxc)u (5.69)

udu = r−2(du)u; udv = r−2(dv)u (5.70)
udz = (dz)u (5.71)

vdxc =
r2

qc
(dxc)v (5.72)

vdu = r2(du)v; vdv = r2(dv)v (5.73)
vdz = (dz)v (5.74)
zdxc = qc(dxc)z (5.75)
zdu = r−2(du)z + (r−2 − 1)(dz)u (5.76)
zdv = r2(dv)z + (r2 − 1)(dz)v (5.77)
zdz = r−2(dz)z (5.78)
PS(dx ∧ dx) = 0 (5.79)

dxc ∧ du = −r2

qc
du ∧ dxc;

dxc ∧ dv = − qc

r2 dv ∧ dxc (5.80)

dxc ∧ dz = − 1
qc

dz ∧ dxc (5.81)

du ∧ du = dv ∧ dv = 0 (5.82)
du ∧ dv = −r−2dv ∧ du = 0 (5.83)
dz ∧ du = −du ∧ dz; dz ∧ dv = −dv ∧ dz (5.84)
dz ∧ dz = 0 (5.85)

∂cx
b = δb

cI + (r2PS − PA − P0)be
cdxd∂e

−(1 − r2)δb
cv∂• (5.86)

∂•xb = qbx
b∂• − Cbc r

N
2 (1 − r2)
(1 − rN )

z∂c (5.87)

∂◦xb = q−1
b xb∂◦ − Cbc r

N
2 (1 − r2)
(1 − rN )

v∂c (5.88)

∂cv = r2q−1
c v∂c (5.89)

∂•v = r2v∂• + I (5.90)
∂◦v = v∂◦ (5.91)
∂cz = qcz∂c (5.92)
∂•z = r2z∂• (5.93)
∂◦z = r−2z∂◦ + I + (r2 − 1)v∂• (5.94)

Table 2. the SOq,r(N) - bicovariant xa, v, ∂a, ∂•, dxa, dv
algebra

P ab
A cdxcxd = 0 (5.95)

xbv = qbvxb (5.96)

x ⊗ dx = rR̂(dx ⊗ x) (5.97)
xcdv = qc(dv)xc + λr(dxc)v (5.98)

vdxc =
r2

qc
(dxc)v (5.99)

dx ∧ dx = −rR̂dx ∧ dx (5.100)

dxc ∧ dv = − qc

r2 dv ∧ dxc (5.101)

dv ∧ dv = 0 (5.102)

∂cx
b = rR̂be

cdxd∂e + δb
c [I + (r2 − 1)v∂•] (5.103)

∂•xb = qbx
b∂• (5.104)

∂•v = r2v∂• + I (5.105)

(PA)ab
cd∂b∂a = 0 (5.106)

∂b∂• − qb

r2 ∂•∂b = 0 (5.107)

Conjugation:

(xa)∗ = Da
bx

b, (dxa)∗ = Da
bdxb, (∂a)∗ = −rNd−1

a Db
a∂b

(5.108)
v∗ = v, (dv)∗ = dv, (∂•)∗ = u − ∂• (5.109)

r = r−1, qa =
1
qa

for a 6= n, n + 1, qn =
1

qn+1
(5.110)

Table 3. the reduced SOq,r(N) -bicovariant xa, ∂a, dxa alge-
bra

P ab
A cdxcxd = 0 (5.111)

x ⊗ dx = rR̂(dx ⊗ x) (5.112)

dx ∧ dx = −rR̂(dx ∧ dx) (5.113)

∂cx
b = rR̂be

cdxd∂e + δb
cI (5.114)

P ab
A cd∂b∂a = 0 (5.115)

Conjugation:

(xa)∗ = Da
bx

b, (dxa)∗ = Da
bdxb, (∂a)∗ = −rNd−1

a Db
a∂b

(5.116)
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additional scaling operator as in [25]. Thus the algebra
in Table 3 can be taken as starting point for a deformed
Heisenberg algebra (i.e. a deformed phase-space) .

Real coordinates and hermitean momenta

We note that for the real form ISOq,r(n + 1, n − 1), the
transformation

Xa =
1√
2
(xa + xa′

) , a ≤ n (5.117)

Xn+1 =
i√
2
(xn − xn+1) (5.118)

Xa =
1√
2
(xa − xa′

) , a > n + 1 (5.119)

defines real coordinates Xa. On this basis the metric be-
comes C ′ = (M−1)TCM−1 (where M is the transforma-
tion matrix X = Mx):

C′= 1
2




r
N
2 −1

+r
− N

2 +1
0 0

−(r
N
2 −1
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N
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+r
− N
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)




(5.120)
and reduces for r → 1 to the usual SO(n+ 1, n− 1) diag-
onal metric with n + 1 plus signs and n − 1 minus signs.
Notice that the diagonal elements of C ′ are real while the
off diagonal ones are imaginary; moreover C ′ is hermitian
(and can therefore be diagonalized via a unitary matrix).

As for the coordinates X, it is possible to define anti-
hermitian χ and ∂, and real ω and dx. To define hermitian
momenta we first notice that the partial derivatives

∂̃a ≡ r
N
2 d
− 1

2
a ∂a (5.121)

behave, under the hermitian conjugation ∗, similarly to
the coordinates xa (see (5.50), (5.51)):

(∂̃a)∗ = −∂̃a a 6= n, n + 1 (5.122)

(∂̃n)∗ = −∂̃n+1 . (5.123)

As in (5.117)–(5.119) we then define:

Pa =
−ih̄√

2
(∂̃a + ∂̃a′) , a ≤ n (5.124)

Pn+1 =
−h̄√

2
(∂̃n − ∂̃n+1) (5.125)

Pa =
−ih̄√

2
(∂̃a − ∂̃a′) , a > n + 1 (5.126)

It is easy to see that the Pa are hermitian: Pa
∗ = Pa, and

that in the classical limit are the momenta conjugated to
the coordinates Xa: Pa(Xb) = −ih̄δb

a. In the r 6= 1 case
we explicitly have (use da′ = d−1

a , dn = dn+1 = 1):

Pa(Xa) = − 1
2 ih̄r

N
2 (d

1
2
a + d

− 1
2

a )

Pa(Xa′
) = − 1

2 ih̄εar
N
2 (d

1
2
a − d

− 1
2

a )
where εa = 1 if a < n
and εa = −1 if a > n+ 1

while the other entries of the Pa(Xb) matrix are zero.

By defining the transformation matrix N b
a as:

Pa ≡ −ih̄N b
a ∂b (5.127)

we find the deformed canonical commutation relations:

PaX
b − rSbc

adX
dPc = −ih̄Eb

aI (5.128)

where

Sbc
ad = N e

a M
b
f R̂

fh
eg(M

−1)g
d(N

−1) c
h ,

Eb
a ≡ i

h̄
Pa(Xb) = N c

a M
b
c (5.129)

Similarly one finds all the remaining commutations of the
P , X and dX algebra. Notice that no unitary operator
appears on the right-hand side of (5.128). Our conjugation
is consistent with (5.128) without the need of the extra
operator of [25].

For n = 2 the results of this section immediately yield
the bicovariant calculus on the quantum Minkowski space,
i.e. on the multiparametric orthogonal quantum plane
Funq,r(ISO(3, 1)/SO(3, 1)). The relevant formulas are
collected in Appendix A.

A X, dX, P commutations
for the D=4 quantum Minkowski space

X real and P hermitean: X∗ = X,P ∗ = P

Parameters

Two parameters: r, q ≡ q12, with

|r| = 1,
q

r
∈ R ⇒ r = r−1, q =

q

r2
(A.1)

Definitions

λ ≡ r−r−1, λ̃ ≡ r

q
− q

r
, µ ≡ r+r−1, µ̃ ≡ r

q
+
q

r
(A.2)
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XX commutations

X2X1 =
1

µ2 + λ̃2
[µµ̃X1X2 + µλX2X4 + iλ̃µ̃X3X4

−iλ̃λX1X3]

X3X1 =
1

µ2 + λ̃2
[µµ̃X1X3 + µλX3X4 − iλ̃µ̃X2X4

+iλ̃λX1X2]

X4X1 = X1X4 +
λ

2
(X2X2 +X3X3)

X3X2 = X2X3

X4X2 =
1

µ2 + λ̃2
[µµ̃X2X4 − µλX1X2 − iλ̃µ̃X1X3

−iλ̃λX3X4]

X4X3 =
1

µ2 + λ̃2
[µµ̃X3X4 − µλX1X3 + iλ̃µ̃X1X2

+iλ̃λX2X4]

X dX commutations

X1dX1 =
1
4
(r−2 + 3r2)(dX1)X1

−λ2

4
[(dX4)X1 − (dX1)X4]

−λ

2
[(dX2)X2 + (dX3)X3]

+
1
4
(r2 − r−2)(dX4)X4

X1dX2 =
1
2
rµ̃(dX2)X1 +

rλ

2
d[X1 −X4]X2

− i

2
rλ̃(dX3)X4

X1dX3 =
1
2
rµ̃(dX3)X1 +

rλ

2
d[X1 −X4]X3

+
i

2
rλ̃(dX2)X4

X1dX4 = [
1
4
(r2 − r−2) + 1](dX4)X1

+
λ2

4
[(dX1)X1 − (dX4)X4]

−λ

2
[(dX2)X2 + (dX3)X3]

+[
1
4
(3r2 + r−2) − 1](dX1)X4

X2dX1 =
1
2
rµ̃(dX1)X2 +

rλ

2
dX2(X1 +X4)

+
i

2
rλ̃(dX4)X3

X2dX2 =
rµ

2
(dX2)X2 − rλ

2
(dX3)X3

−λ

2
d[X1 −X4](X1 +X4)

X2dX3 =
rµ

2
(dX3)X2 +

rλ

2
(dX2)X3

X2dX4 =
1
2
rµ̃(dX4)X2 +

rλ

2
dX2(X1 +X4)

+
i

2
rλ̃(dX1)X3

X3dX1 =
1
2
rµ̃(dX1)X3 +

rλ

2
dX3(X1 +X4)

− i

2
rλ̃(dX4)X2

X3dX2 =
rµ

2
(dX2)X3 +

rλ

2
(dX3)X2

X3dX3 =
rµ

2
(dX3)X3 − rλ

2
(dX2)X2

−λ

2
d[X1 −X4](X1 +X4)

X3dX4 =
1
2
rµ̃(dX4)X3 +

rλ

2
dX3(X1 +X4)

− i

2
rλ̃(dX1)X2

X4dX1 = [
1
4
(r2 − r−2) + 1](dX1)X4

−λ2

4
[(dX1)X1 − (dX4)X4]

+
λ

2
[(dX2)X2 + (dX3)X3]

+[
1
4
(3r2 + r−2) − 1](dX4)X1

X4dX2 =
1
2
rµ̃(dX2)X4 − rλ

2
d[X1 −X4]X2

− i

2
rλ̃(dX3)X1

X4dX3 =
1
2
rµ̃(dX3)X4

−rλ

2
d[X1 −X4]X3

+
i

2
rλ̃(dX2)X1

X4dX4 =
1
4
(r−2 + 3r2)(dX4)X4

+
λ2

4
[(dX4)X1 − (dX1)X4]

+
λ

2
[(dX2)X2 + (dX3)X3]

+
1
4
(r2 − r−2)(dX1)X1

dX dX commutations

(Products between dX are exterior (wedge) products)

dX1dX1 = 0

dX1dX2 =
1

µ2 − λ̃2
[−µµ̃dX2dX1 + µλdX4dX2

−iλ̃µ̃dX4dX3 − iλλ̃dX3dX1]

dX1dX3 =
1

µ2 − λ̃2
[−µµ̃dX3dX1 + µλdX4dX3



174 P. Aschieri et al.: Quantum orthogonal planes: ISOq,r(N) and SOq,r(N)

+iλ̃µ̃dX4dX2 + iλλ̃dX2dX1]
dX1dX4 = −dX4dX1

dX2dX2 = −λ

2
dX4dX1

dX2dX3 = −dX3dX2

dX2dX4 =
1

µ2 − λ̃2
[−µµ̃dX4dX2 − µλdX2dX1

+iλ̃µ̃dX3dX1 − iλλ̃dX4dX3]

dX3dX3 = −λ

2
dX4dX1

dX3dX4 =
1

µ2 − λ̃2
[−µµ̃dX4dX3 − µλdX3dX1

−iλ̃µ̃dX2dX1 + iλλ̃dX4dX2]
dX4dX4 = 0

P X commutations

Defining

A ≡ −rλ

4
[(X1 −X4)(P1 − P4) + r2(X1 +X4)(P1 + P4)

+2r(X2P2 +X3P3)]

B ≡ −rλ

4
[(X1 −X4)(P1 − P4) − r2(X1 +X4)(P1 + P4)

−2r(X2P2 +X3P3)]

the commutations are:

P1X
1 −X1P1 +A = −1

2
ih̄r2µ

P1X
2 − rµ̃

2
X2P1 − r

2
[−λ(X1 +X4)P2 + iλ̃X3P4] = 0

P1X
3 − rµ̃

2
X3P1 − r

2
[−λ(X1 +X4)P3 − iλ̃X2P4] = 0

P1X
4 − r2X4P1 +B − rλX1P4 =

1
2
ih̄r2λ

P2X
1 − rµ̃

2
X1P2 − r

2
[−λX2(P1 + P4) + iλ̃X4P3] = 0

P2X
2 − rµ

2
X2P2 − rλ

2
[X3P3 + r(X1 +X4)(P1 + P4)]

= −ih̄r2

P2X
3 − rµ

2
X3P2 +

rλ

2
X2P3 = 0

P2X
4 − rµ̃

2
X4P2 − r

2
[λX2(P1 + P4) + iλ̃X1P3] = 0

P3X
1 − rµ̃

2
X1P3 − r

2
[−λX3(P1 + P4) − iλ̃X4P2] = 0

P3X
2 − rµ

2
X2P3 +

rλ

2
X3P2 = 0

P3X
3 − rµ

2
X3P3 − rλ

2
[X2P2 + r(X1 +X4)(P1 + P4)]

= −ih̄r2

P3X
4 − rµ̃

2
X4P3 − r

2
[λX3(P1 + P4) − iλ̃X1P2] = 0

P4X
1 − r2X1P4 +B − rλX4P1 =

1
2
ih̄r2λ

P4X
2 − rµ̃

2
X2P4 − r

2
[λ(X1 +X4)P2 + iλ̃X3P1] = 0

P4X
3 − rµ̃

2
X3P4 − r

2
[λ(X1 +X4)P3 − iλ̃X2P1] = 0

P4X
4 −X4P4 +A = −1

2
ih̄r2µ

P P commutations

P 2P 1 =
1

µ2 + λ̃2
[µµ̃P 1P 2 − µλP 2P4

−iλ̃µ̃P3P4 − iλ̃λP1P3]

P 3P 1 =
1

µ2 + λ̃2
[µµ̃P 1P 3 − µλP 3P4

+iλ̃µ̃P2P4 + iλ̃λP1P2]

P 4P 1 = P 1P 4 − λ

2
(P2P2 + P3P3)

P 3P 2 = P 2P 3

P 4P 2 =
1

µ2 + λ̃2
[µµ̃P 2P 4 + µλP 1P2

+iλ̃µ̃P1P3 − iλ̃λP3P4]

P 4P 3 =
1

µ2 + λ̃2
[µµ̃P 3P 4 + µλP 1P3

−iλ̃µ̃P1P2 + iλ̃λP2P4]

B R matrix of orthogonal q-groups:
properties

Let R̂ be the matrix defined by R̂ab
cd ≡ Rba

cd.

Characteristic equation and projector decomposition:

(R̂− rI)(R̂+ r−1I)(R̂− r1−NI) = 0 (B.1)

R̂− R̂−1 = (r − r−1)(I −K) (B.2)

R̂ = rPS − r−1PA + r1−NP0 (B.3)

with

PS = 1
r+r−1 [R̂+ r−1I − (r−1 + r1−N )P0]

PA = 1
r+r−1 [−R̂+ rI − (r − r1−N )P0]

P0 = QN (r)K
QN (r) ≡ (CabC

ab)−1 = 1−r−2

(1−r−N )(1+rN−2) ,

Kab
cd = CabCcd

I = PS + PA + P0

(B.4)

Other properties involving the q-metric:

CabR̂
bc

de = (R̂−1)cf
adCfe, R̂bc

deC
ea = Cbf (R̂−1)ca

fd

(B.5)
CabR̂

ab
cd = r1−NCcd, CcdR̂ab

cd = r1−NCab (B.6)

The identities (B.5) hold also for R̂ → R̂−1.
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